

The effects of teleworking on CO₂ emissions to commute: Baselining key data in living labs to investigate transformative change

Swiss Mobility Conference SMC 2023 Lausanne, Switzerland

MSc Jana Z'Rotz MA Noah Balthasar Prof. Dr. Timo Ohnmacht

Business September 14, 2023 Swice swiss energy research for the energy transition

FH Zentralschweiz

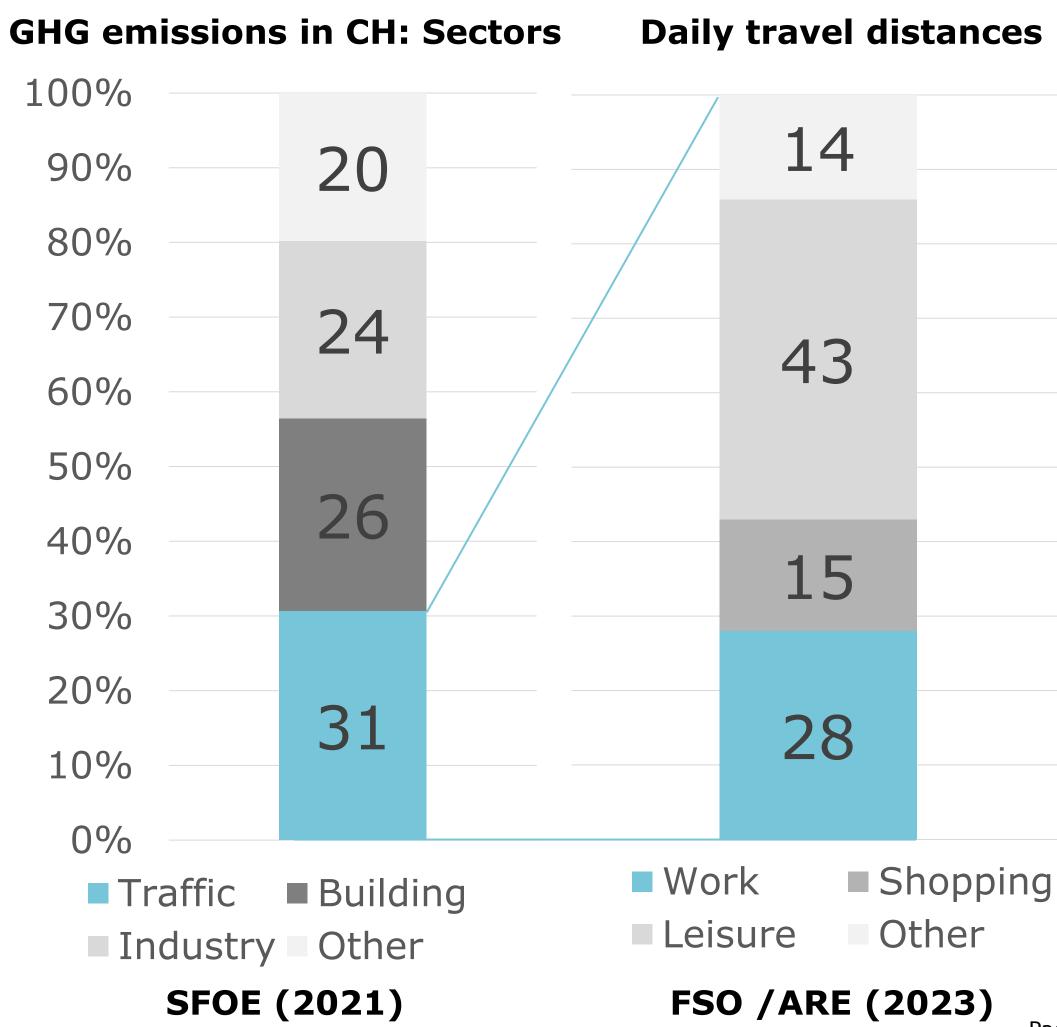
Overview

Study aim & research questions

Literature review

LL *«Suurstoffi»*

Methodology


Results: Linear regression model

Summary & outlook

- So far, **GHG reduction** has been achieved mostly in the building and industry sector.
- **One third** of GHG emission is caused **in the** traffic sector.
- But: No reduction in emissions since **1990 in the** traffic sector (FOEN 2022; SFOE 2020; 2021, p.5; FSO 2022b, 2022a).
- Traffic caused in 2021 **13.9 mio. tons** of **CO**₂
- Trip purpose work = 28 %, equals **3.9 mio. tons of CO**₂
- 5 mio. employees in Switzerland. On average: **761 kg of CO₂ per year.**

How high is this figure in our LL? **Can it be influenced?**

Green house gas (GHG) emission in Switzerland and daily travel distances (2021)

Literature Review

Teleworking is understood as work activities that are done outside the traditional workplace (Morganson et al. 2010).

Teleworking is considered as a (transport) **policy** to **reduce** work related **travel CO₂ emissions** (Cass & Faulconbridge 2016; Santos & Azhari 2022)

For Switzerland:

- Ohnmacht et al. (2020) show effects for using **co-working spaces** and
- Wöhner (2022) & Ravalet and Rérat (2019) for home-office use on **reducing distance travelled** on the day of the telework activity.

In general: CO₂ emissions for work commutes are influenced by

- **commuting distance** (i.a. Heinen & Mattioli 2019)
- mode of transport (i.a. Pérez-Neira et al. 2020; Sobrino & Arce 2021)
- various **sociodemographic indicators** (gender, income, age, household) (i.a. Brand et al. 2021; Cao & Yang 2017; Cirilli & Veneri 2014, Wang & Zeng 2019)

Research gap: Rebound effects (e.g., more leisure trips on teleworking days) and spillover effects (e.g., increase in individual living space due to separate rooms for home office)

Transformative change within a Living Lab (LL)

life setting.

To "encourage people's engagement in new ways of doing" within the discourse of climate change through a participatory setting (co-creation of interventions) (Sahakian et al. 2021, p.3).

Shortcomings of participatory practices within LLs:

- Valid population data on consumption patterns and mobility behavior is often scarce especially when the living lab is set up initially.
- central to a living lab approach (e.g., for the government or policy makers that finance research).
- Key data is the backbone of evaluation studies.

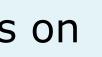
But how to achieve this key data?

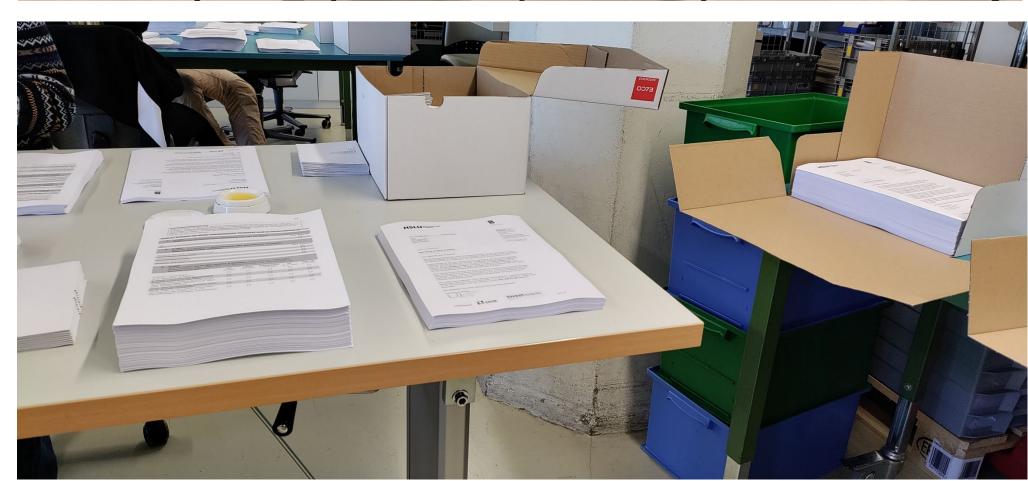
Our understanding: In energy studies, a LL introduces a (temporary) transformative change within a real-

- Quantitative monitoring of energy savings and the GHG mitigation reduction introduced by interventions is

Study aims and research questions (RQ)

<u>Aim 1</u>: Carrying out a (cross-sectional) base-line-survey, questionnaire before intervention


<u>Aim 2</u>: Including key data to describe the residents of the living lab (socio-demographics, work life characteristic, CO₂-figures for work commutes)


<u>Aim 3</u>: Survey design and methodology is understood as a process of collaboration within the living lab

RQ 1: How can the GHG mitigation potential of the intervention "telework" be analyzed in a LL?

<u>RQ 2</u>: What are the effects of individual characteristics on CO₂ emission for work commutes?

Our LL «Suurstoffi»

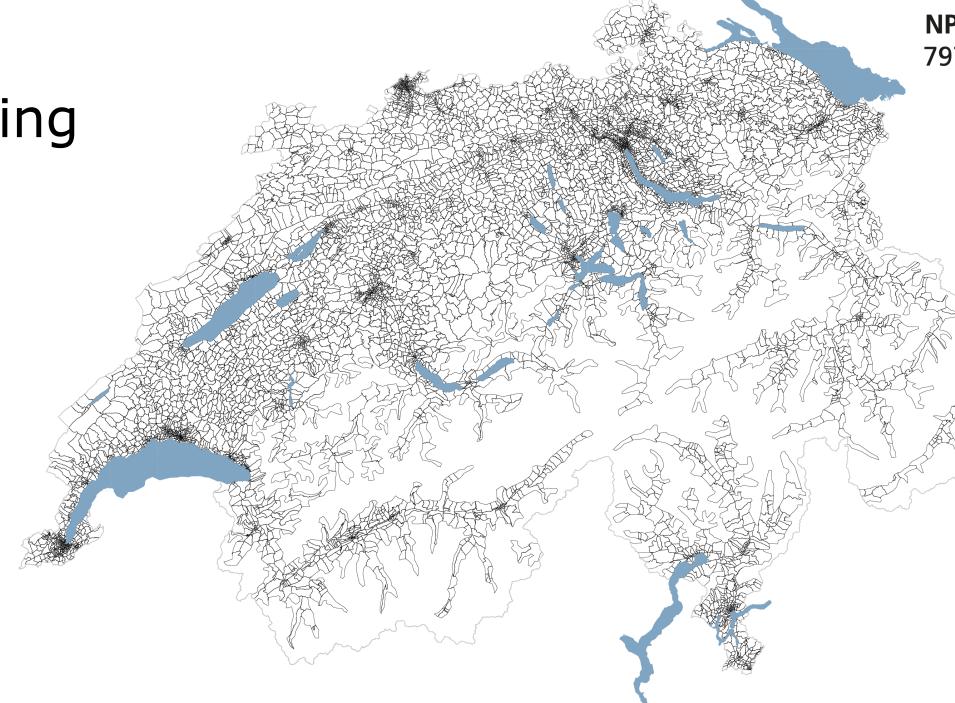
The modern "Suurstoffi" Site in the municipality of Risch-Rotkreuz serves as a LL.

- 1500 inhabitants
- 2500 workplaces
- 2600 students

Methodology: Study design

Participative approach

board for the methodological design and content of our study. Addresses were provided by the **municipality** of Risch-Rotkreuz.


- **Quantitative cross-sectional study** with standardized questionnaire
- **Representative survey** of residents with an age of 18 years and older (n = 922 persons)
- **Personal letter** with paper-pencil-survey and prepaid reply envelope, in parallel **online survey** in German or English
- **Incentive** in form of a **voucher worth 10 Swiss francs** per person from a local bakery after response
- **Reminder** wave with response control & **field support** with hotline and email support
- Response rate after date cleaning: n = 296 : <u>32%</u>

- Researchers, public bodies, a real-estate company, industry partners and transport companies have served as a sounding

Methodology: Generating CO₂ figures for commuting

- Study participants report **workdays of the** week, postal code of workplace locations, mode of transport (MoT) for commute
- Matching of living location and workplace **location via postal codes** with traffic zones of the Swiss federal transport model
- **Imputation** of **commuting distance** to the survey
- Combining the distances per MoT and commute with CO2 equivalent factors based on mobitool factors (Swiss standard)

МоТ	CO_2 factors [grams CO_2 -equivaler
Passenger car, diesel, gasoline (fleet average)	186.4
Passenger car, battery electric (fleet average)	89.8
Train, regional transport, s-rail	8.2
By bike	5.6
On foot	0

NPVM 2017 7978 Zonen

Descriptives: general

Attribute	% / Mean				
Gender	50 % female				
Age	41 years				
Household (HH) size	2.4 persons				
HH income	10 140 Swiss Francs				
Car use	23 % car free HH				
PT tickets	86 % of HH				
Workload	84 %				
Telework rate	60 %				
Telework days per week	1.6				
Note: Two sample t-test, $* =$ the difference is significant at the					

e 0. MoT = mode of transport, HH = household, Sig. = Significance, PT = Public Transport

Attribute	% / Mean	Sig.
MoT for work commute		
Car	46 %	
PT	35 %	
Bike	5 %	
Walk	13 %	
Commuting distance (per day,	one way)	*
All	27 km	
Teleworkers	31 km	
No teleworkers	21 km	
5 level (p <.05, 2-sided).	r	n=242

Descriptives: CO₂ emission to commute (kg per year)

Attribute	Mean Sig.	Attribute	Mean Sig
Work commute		Gender	
Switzerland	761 kg	Female	622 kg
LL	742 kg	Male	819 kg
MoT for work commute	**	Survey language	*>
Car	1538 kg	German	805 kg
Public transport (PT)	77 kg	English (proxy for "expats")	326 kg
Bike	28 kg		
Walk	0 kg	Teleworking	*
		Yes	597 kg
	Correlation	No	964 kg
Income	.125 .		
Note: Two sample t-test / ANOVA ** = The difference is significant a			n=23

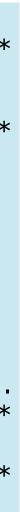
Attribute	Mean	Sig.	Attribute	Mean	Sig.
Work commute			Gender		
Switzerland	761 kg		Female	622 kg	
LL	742 kg		Male	819 kg	
MoT for work commute		**	Survey language		**
Car	1538 kg		German	805 kg	
Public transport (PT)	77 kg		English (proxy for "expats")	326 kg	
Bike	28 kg				
Walk	0 kg		Teleworking		*
			Yes	597 kg	
	Correlation		No	964 kg	
Income	.125				
Note: Two sample t-test / ANOVA ** = The difference is significant a				١	n=235

= The difference is significant at the 0.05 level (p<.05, 2-sided). *

= The correlation is significant at the 0.10 level (p < .10, 2-sided).

Sig. = Significance

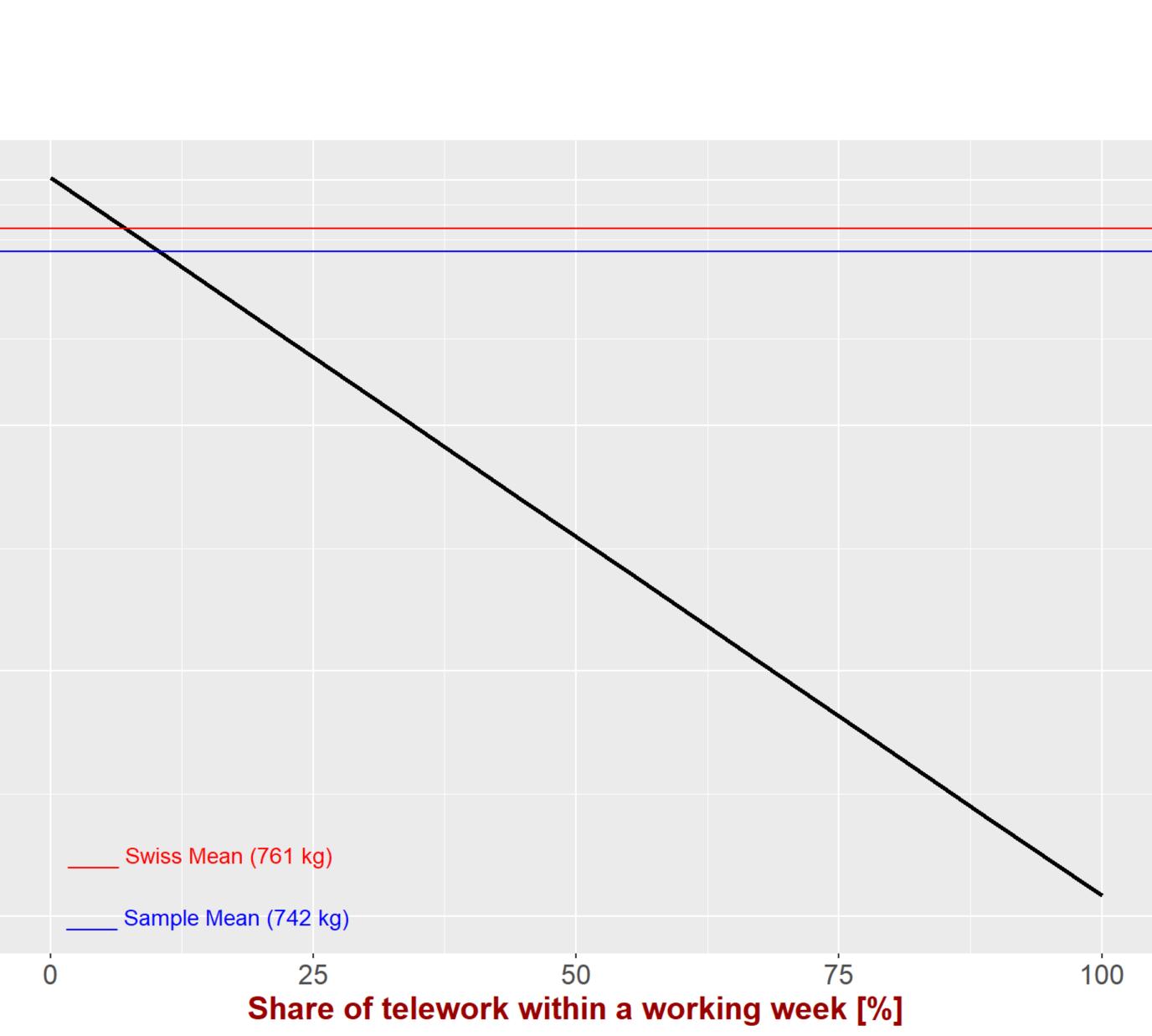
PMA & «Orientations» towards the car and PT


Constructs	Mean	Sig.	Constructs Correla	tion (r) Sig.
Phase Model of Action (PMA) (based on Bamberg 2013)		**	Orientations (5-point Likert scale)	
<i>Phase 1: no car use reduction planed</i>	1005 kg	•	Travelling by other MoT than car is good/pleasant	222 *
Phase 2: reduction considered, but impossible	1549 kg	**	Travelling by other MoT than car is easy/practicable	377 *
Phase 3: reduction planed, first attempts	681 kg	•	PT is too inflexible for me	.193 **
Phase 4: is reducing, wants more	463 kg		I like to travel by PT because I can focus on other things during the	182 **
Phase 5: no car is used at all	61 kg	**	journey	
Note: Two sample t-test / ANOVA / Pearson	correlation co	efficient	r	n=235

** = The difference/correlation is significant at the 0.01 level (p<.01, 2-sided). * = The difference/correlation is significant at the 0.05 level (p<.05, 2-sided). . = The correlation is significant at the 0.10 level (p < .10, 2-sided). Sig. = Significance

		CO2 emissions to commute (kg per				Sig
Independent Variables		<u>b</u>	SE	t values	Pr (> t)	
Intercept		1680.93	556.42	3.02	0.003	
Share of telework within a working week	percent	-5.86	2.38	-2.46	0.015	
Workload	fulltime (Ref.: parttime)	341.43	162.82	2.10	0.038	
Anartmant awnarchin		-49.65	192.99	-0.26	0.797	
Apartment ownership	owner (Ref.: tenant)	-49.03	192.99	-0.20	0.797	
Length of residence	Years	33.20	21.75	1.53	0.129	
Public transport subscription	yes (Ref.: no)	-270.84	168.97	-1.60	0.111	
Cars in household	number (metric)	-55.72	241.14	-0.23	0.818	
Bikes in household	number (metric)	165.18	175.95	0.94	0.349	
MaaS use in a year		-3.24	6.67	-0.49	0.628	
Regular workplace location	suburban	110.69	395.51	-0.28	0.780	
	urban	-944.72	366.25	-2.58	0.011	
	(Ref.: Rural)					
Phase model of action (PMA)	Phase 2	546.52	188.30	2.90	0.004	
	Phase 3	17.90	238.00	0.08	0.940	
	Phase 4	-55.40	188.06	-0.30	0.769	
	Phase 5	-247.74	265.51	-0.93	0.352	
	(Ref.: Phase 1)					
Residential location choice	Close to					
	highway	61.98	158.54	0.39	0.696	
	public transport	-272.62	159.18	-1.71	0.089	
	workplace	-332.56	129.28	-2.57	0.011	
Traveling by MoT other than the private car is practicable	yes	-316.16	157.58	-2.01	0.047	
	(Ref.: no)					
Gender	male	108.04	133.27	0.81	0.419	
	(Ref.: female)					
Age	Years	-4.86	6.55	-0.74	0.459	
Gross household income	Swiss Francs	0.02	0.02	0.80	0.428	
Household size	number (metric)	19.93	65.72	0.30	0.762	
Expats (proxy: English survey)	Yes	-244.65	245.48	-1.00	0.321	
n = 225	(Ref.: no)					
n = 235 Explained Variance = 49 %, adjusted-R ² = 0.49						
Explained variance = 49% , adjusted-k ⁻ = 0.49 F-statistic				6.097	0.000	
Contombox 14, 2022	· · · · · · · · · · · · · · · · · · ·	is significant at the 0.01 level (p<.01).		0.077	0.000	F

. = The effect is significant at the 0.10 level (p < .10).



* age 12

Effects of **telework** on CO₂ emissions to commute (kg per year)

- CO₂ emission to commute per year
 - Switzerland: 761 kg
 LL: 742 kg
- Increase of telework of 10% within a working week leads to a reduction of approximately 60 kg of CO₂ per year.
- A person who teleworks 50% consumes approx. 500 kg CO₂ per year.

800-761 742 (kg per year) 600commute CO₂ emissions to 400-

Effects of **regular workplace location** on CO₂ emissions to commute

- Significant difference between regular workplace in
 - rural area: 1295 kg per year
 - urban area: 351 kg per year
- Significant **higher** CO₂ emissions, if workplace is in a **rural area**, compared to having a workplace in the **urban area**.
- When having a workplace in the city the group mean is **below** Swiss mean and sample mean.

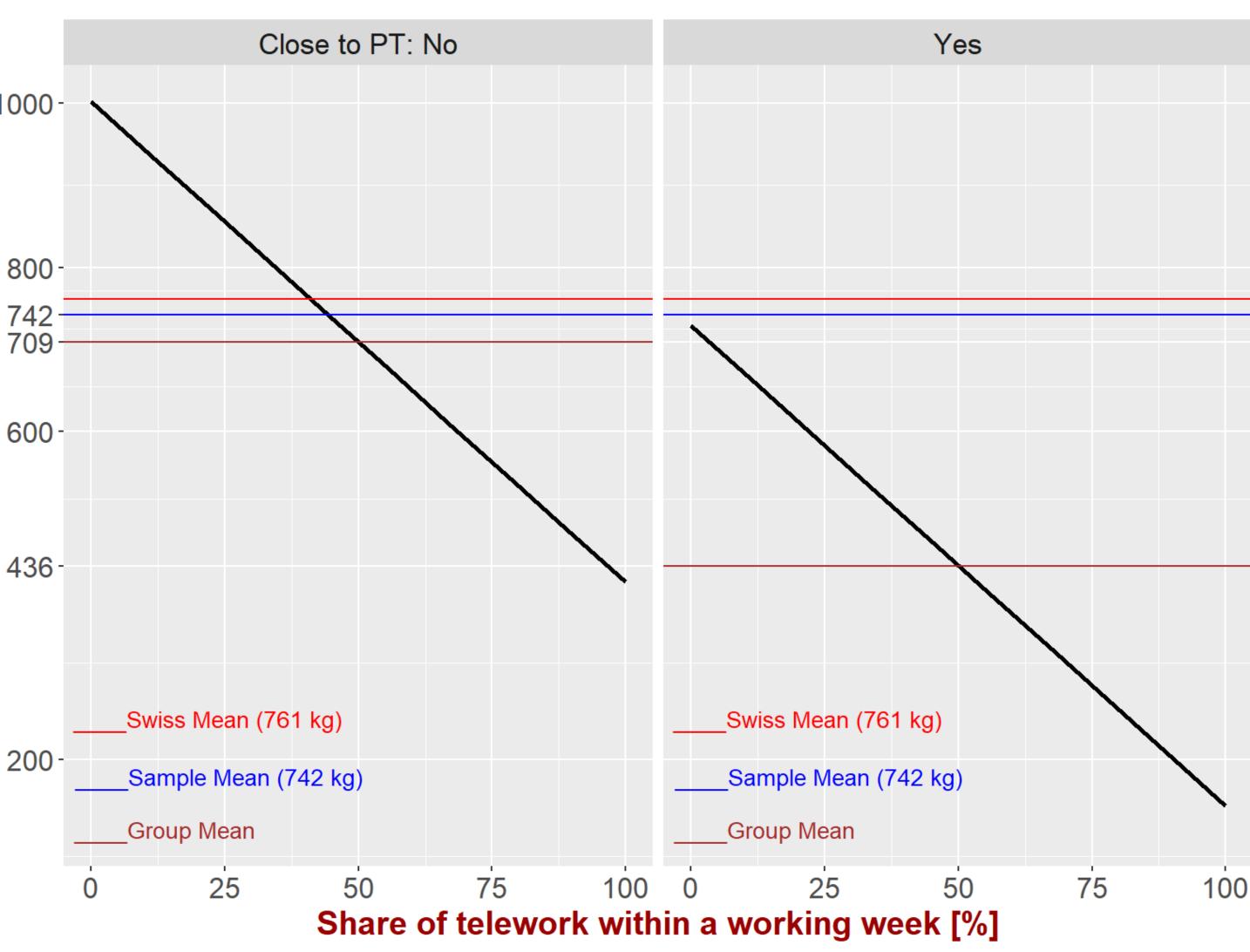
1600

per year) 1295 1200-(kg commute 1000-800-742 CO₂ emissions to 600-400 -351 -200-

0-

Effects of **residential location choice** on CO₂ emissions to commute (close to PT)

- Significant difference between importance of closeness to PT
 - no: 709 kg per year
 - yes: 436 kg per year
- Significant **higher** CO₂ emissions, if closeness to PT is **not** important for residential location choice, compared to the group for which it is.
- Both group means are **lower** than the Swiss mean and the sample mean.

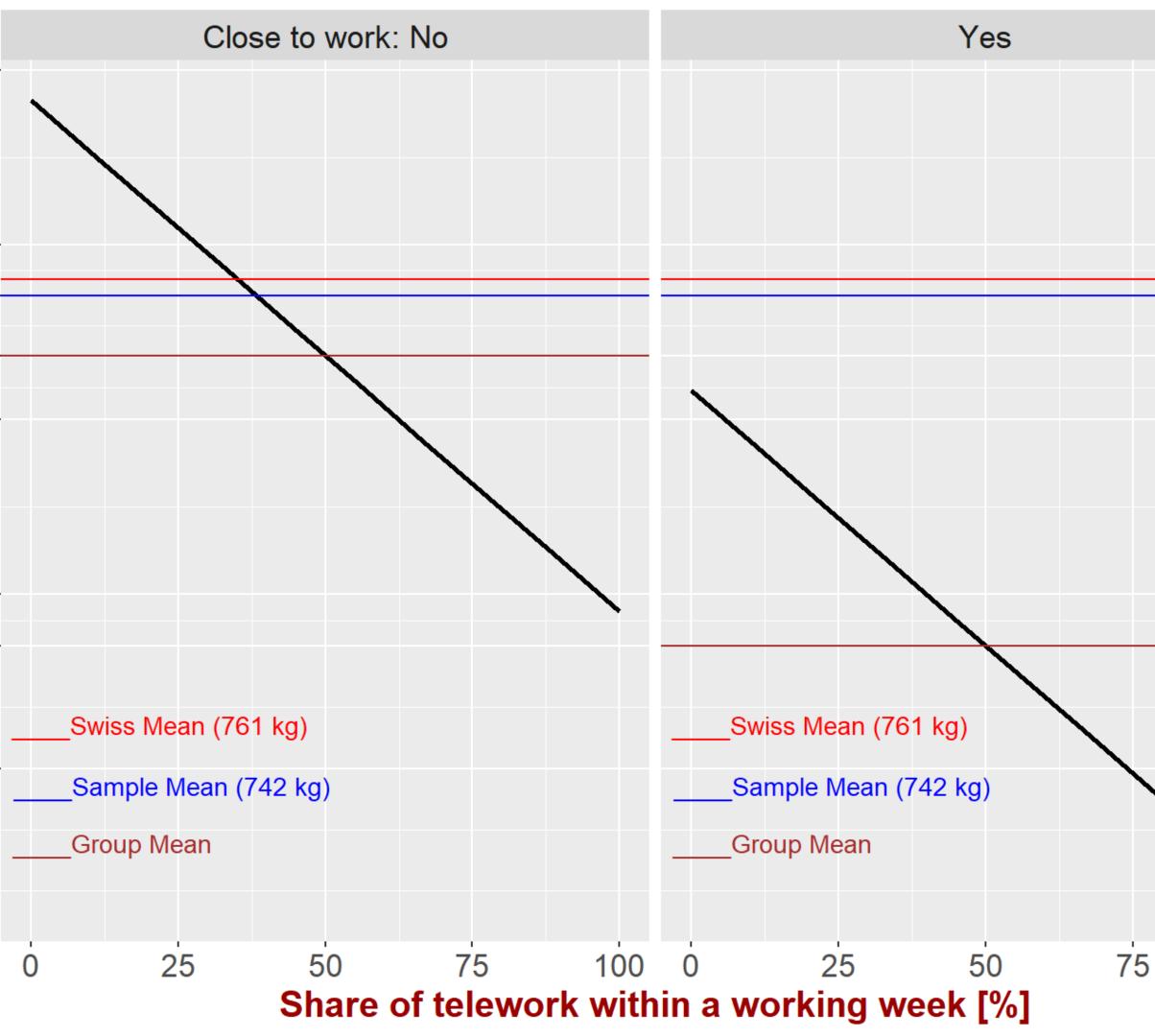

1000-

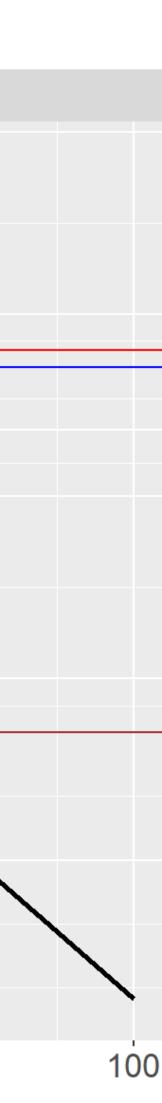
(kg per year)

emissions to commute

 \mathbf{O}_{2}^{2}

O


Effects of **residential location choice** on CO_2 emissions to commute (close to regular workplace)


- Significant difference between importance of closeness to the regular workplace
 - no: 673 kg per year
 - yes: 340 kg per year
- Significant higher CO₂ emissions, if closeness to workplace is not important for residential location choice, compared to the group for which it is.
- Both group means are **lower** than the Swiss mean and the sample mean.

1000-

O² emissions to commute (kg per year) 6000 6000 6000 4000 3400 3400 3400

O

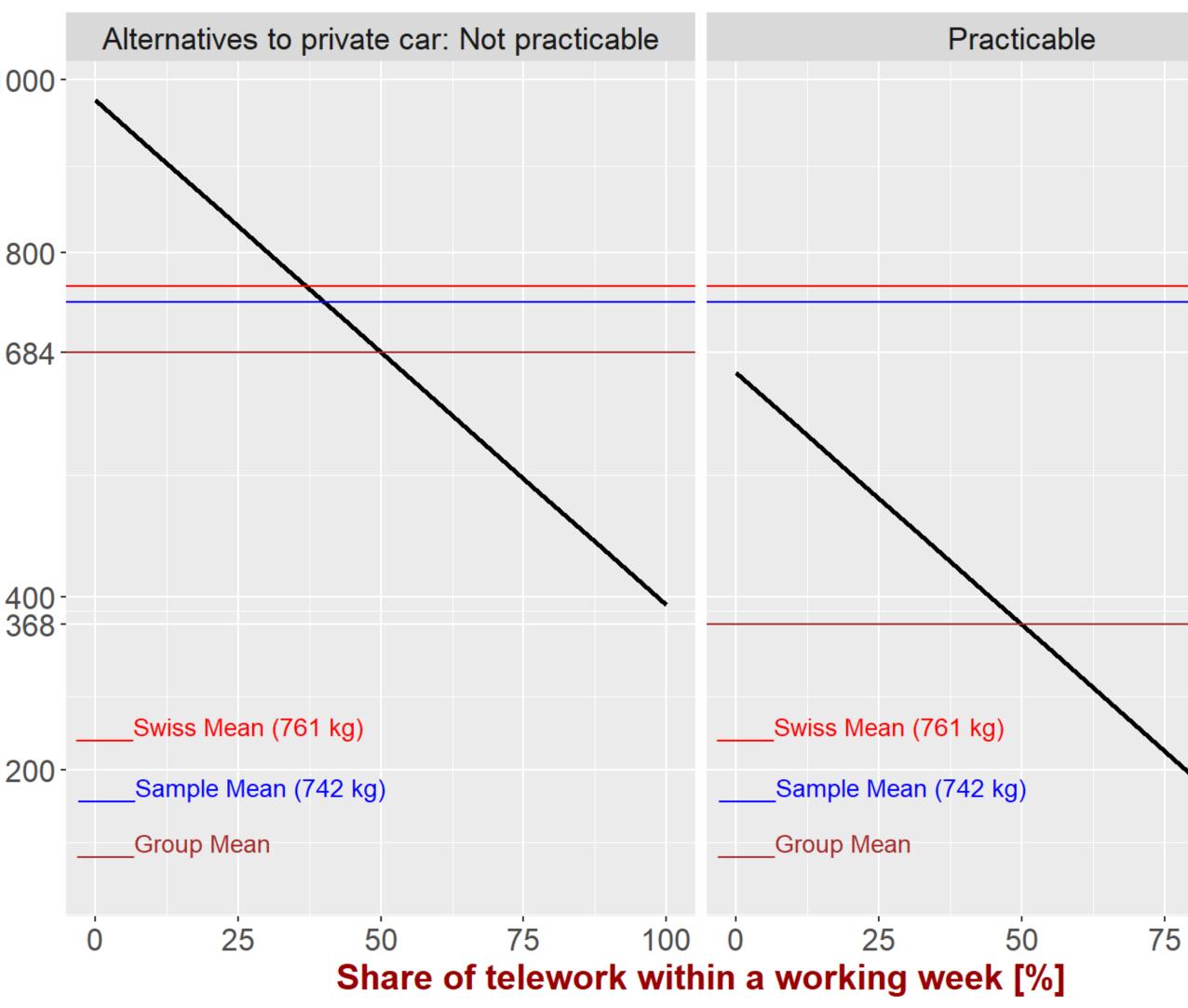


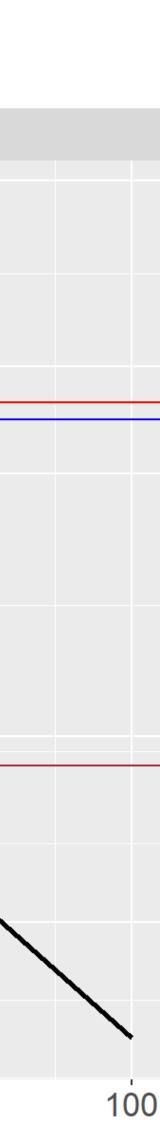
Effects of **phase model of action** (PMA) on CO₂ emissions to commute

- PMA (based on Bamberg)

- *Phase 1:* no car use reduction planed
- *Phase 2:* reduction considered, but impossible
- Significant difference between phases of PMA 1 and 2
 - Phase 1: 428 kg per year
 - Phase 2: 974 kg per year
- Significant **higher** CO₂ emissions, if a person is in phase 2, compared to the person who is in phase 1.
- When self-attributed phase 1: group mean is **below** Swiss mean and sample mean.

(kg per year) 974 emissions to commute 800-600-428 03 \mathbf{O} 200-




Effects of **mobility orientations** on CO₂ emissions to commute (alternatives to private cars)

- Significant difference between orientations to alternatives to private cars
 - not practicable: 684 kg per year
 - **Practicable: 368 kg per year**
- Significant **higher** CO₂ emissions, if alternatives to private car are not practicable, compared to the group for which it is practicable.
- Both group means are **lower** than the Swiss mean and the sample mean.

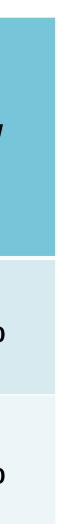
1000-

 \mathbf{O}



Effects of workload on CO₂ emissions to commute

- Workload
 - parttime = less than 90%
 - fulltime = more 90%
- Significant difference between parttime or fulltime workload
 - fulltime: 591 kg per year
 - parttime: 249 kg per year
- Significant higher CO2 emissions, a person is working fulltime, compared to a person who is working parttime.
- Both group means are **lower** than the Swiss mean and the sample mean.



Trip purposes: some hints on rebound effects

	Shopping	Leisure	Bringing and picking up	
	(e.g., errands, going to the pharmacy)	(e.g., sports, visiting friends)	(e.g., children to music lessons, grandparents to the doctor)	Total
Working				
at the <u>regular workplace</u> (n=244, multiple answers)	51.6% [45.4% ; 57.9%]	29.1% [22.8% ; 35.4%]	19.3% [13.0% ; 25.5%]	100%
during <u>teleworking days</u> (n=302, multiple answers)	38.1% [31.8% ; 44.4%]	36.1% [29.8% ; 42.4%]	25.8% [19.6% ; 32.1%]	100%

Note: n=235, [95% confidence interval for the shares]

 \rightarrow Lower shares for shopping trips & higher shares for leisure and accompanying trips on teleworking days in comparison to working days at the regular workplace.

Summary & Outlook

- Key data was produced with a survey that was supported and feedbacked by members of the LL (e.g., public bodies, companies, transportation companies).
- A T_0 -measurement was produced: The people in the LL consume 742 kg CO₂ a year for commutes

This CO₂ emissions to commute (kg per year) in the LL are influenced by:

- share of telework within a working week
- workload
- regular workplace location
- reasons for residential location choices (e.g., closeness to PT, workplace)
- phase model of action (PMA) towards car use
- mobility orientations (e.g., alternatives to private car are practicable)

Outlook on further RQs:

- How does this figure change when we introduce interventions in the LL? (e.g., new co-working spaces as shared space in LL)
- share of leisure trips increase on the teleworking days.

Rebound effects regarding leisure trips need to be considered more in detail. But: First indications that the

Thank you for your attention!

Lucerne School of Business Institute of Tourism and Mobility ITM

Noah Balthasar Research Associate

Phone direct +41 41 228 42 99 noah.balthasar@hslu.ch Lucerne School of Business

Institute of Management & Economics IBR

Jana Z'Rotz Senior Research Associate

Phone direct +41 41 228 99 63 jana.zrotz@hslu.ch

Lucerne School of BusinessIBRInstitute of Tourism and Mobility ITM

Prof. Dr. Timo Ohnmacht Lecturer

Phone direct +41 41 228 41 88 timo.ohnmacht@hslu.ch

Literature

Bamberg, S. (2013). Applying the stage model of self-regulated behavioral change in a car use reduction intervention. *Journal of Environmental Psychology*, 33, 68–75. https://doi.org/10.1016/j.jenvp.2012.10.001

Brand, C., Dons, E., Anaya-Boig E., Avila-Palencia I., Clark, A., de Nazelle, A., Gascon, M., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Kahlmeier, S., Laeremans, M., Nieuwenhuijsen, M.-J., Orjuela, J.-P., Racioppi, F., Raser, E., Rojas-Rueda, D., Standaert, A., Stigell, E., Sulikova, S., Wegener, S., & Panis, L.-I. (2021). The climate change mitigation effects of daily active travel in cities. *Transportation Research Part D: Transport and Environment, 93,* 102764. <u>https://doi.org/10.1016/j.trd.2021.102764</u>

Cao, X [Xiaoshu], & Yang, W. (2017). Examining the effects of the built environment and residential self-selection on commuting trips and the related CO 2 emissions: An empirical study in Guangzhou, China. Transportation Research Part D: Transport and Environment, 52, 480–494. <u>https://doi.org/10.1016/j.trd.2017.02.003</u>

Cass, N., & Faulconbridge, J. (2016). Commuting practices: New insights into modal shift from theories of social practice. *Transport Policy*, 45, 1–14. <u>https://doi.org/10.1016/j.tranpol.2015.08.002</u>

Cirilli, A., & Veneri, P. (2014). Spatial Structure and Carbon Dioxide (CO2) Emissions Due to Commuting: An Analysis of Italian Urban Areas. *Regional Studies, 48*(12), 1993–2005. https://doi.org/10.1080/00343404.2013.827333

FSO (2022a). Leistungen im Personenverkehr. Federal Statistical Office FSO: <u>https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/personenverkehr/leistungen.html</u> (accessed on 15.06.2023)

FSO (2022b). Strassenfahrzeuge - Bestand, Motorisierungsgrad. Federal Statistical Office FSO: <u>https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/verkehrsinfrastruktur-</u> <u>fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-motorisierungsgrad.html</u> (accessed on 15.06.2023)

FOEN (2022). Treibhausgasinventar 2020: Die Schweiz verfehlt ihr Klimaziel knapp. Federal Office for the Environment FOEN: https://www.bafu.admin.ch/bafu/de/home/themen/internationales/mitteilungen.msg-id-87952.html (accessed on 10.10.2022)

Heinen, E., & Mattioli, G. (2019). Multimodality and CO2 emissions: A relationship moderated by distance. *Transportation Research Part D: Transport and Environment*, 75, 179–196. https://doi.org/10.1016/j.trd.2019.08.022

Morganson, V. J., Major, D. A., Oborn, K. L., Verive, J. M., & Heelan, M. P. (2010). Comparing telework locations and traditional work arrangements. *Journal of Managerial Psychology*, 25(6), 578-595. https://doi.org/10.1108/02683941011056941

Literature

Ohnmacht, T., Z'Rotz, J., & Dang, L. (2020). Relationships between coworking spaces and CO2 emissions in work-related commuting: first empirical insights for the case of Switzerland with regard to urban-rural differences. Environmental Research Communications, 2(12), 125004. https://doi.org/10.1088/2515-7620/abd33e

Pérez-Neira, D., Rodríguez-Fernández, M. P., & Hidalgo-González, C. (2020). The greenhouse gas mitigation potential of university commuting: A case study of the University of León (Spain). Journal of Transport Geography, 82, 102550. https://doi.org/10.1016/j.jtrangeo.2019.102550

Ravalet, E., & Rérat, P. (2019). Teleworking: decreasing mobility or increasing tolerance of commuting distances? Built Environment, 45(4), 582-602. 10.2148/benv.45.4.582

Sahakian, M., Rau, H., Grealis, E., Godin, L., Wallenborn, G., Backhaus, J., Friis, F., Genus, A.-T., Goggins, G., Heaslip, E., Heiskanen, E., Iskandarova, M., Jensen, C.-L., Laakso, S., Musch, A.-K., Scholl, C., Vadovics, E., Vadovics, K., Vasseur, V., & Fahy, F. (2021). Challenging social norms to recraft practices: A Living Lab approach to reducing household energy use in eight European countries. Energy Research & Social Science, 72, 101881. https://doi.org/10.1016/j.erss.2020.101881

Santos, G., & Azhari, R. (2022). Can we save GHG emissions by working from home? Environmental Research Communications, 4(3), 35007. https://doi.org/10.1088/2515-7620/ac3d3e


Sobrino, N., & Arce, R. (2021). Understanding per-trip commuting CO2 emissions: A case study of the Technical University of Madrid. *Transportation Research Part D: Transport and Environment, 96,* 102895. <u>https://doi.org/10.1016/j.trd.2021.102895</u>

SFOE (2020). CO2-Emissionsvorschriften für neue Personen - und Lieferwagen. Swiss Federal Office of Energy SFOE: https://www.bfe.admin.ch/bfe/de/home/effizienz/mobilitaet/co2-emissionsvorschriften-fuer-neue-personen-und-lieferwagen.html (accessed on 12.06.2023).

SFOE (2021). Schweizerische Gesamtenergiestatistik 2021 [Report], Swiss Federal Office of Energy SFOE, Bern. https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-<u>und-geodaten/energiestatistiken/gesamtenergiestatistik.html</u> (accessed on 10.06.2023).

Wang, H., & Zeng, W. (2019). Revealing urban carbon dioxide (CO2) Emission characteristics and influencing mechanisms from the perspective of commuting. *Sustainability*, 11(2), 385. <u>10.3390/su11020385</u>

Wöhner, F. (2022). Work flexibly, travel less? The impact of telework and flextime on mobility behavior in Switzerland. Journal of Transport Geography, 102, 103390. https://doi.org/10.1016/J.JTRANGEO.2022.103390

