

1日 直翅 古

Monitoring transformative change within a living lab:

SCORAI-ERSCP-WUR Conference

- a participatory survey design for base-lining key data
 - MSc Jana Z'Rotz
 - MA Noah Balthasar
 - Prof. Dr. Timo Ohnmacht

www.scp-conference-2023.com

Monitoring transformative change within a living lab: a participatory survey design for base-lining key

a participatory survey design for base-linin data

SCORAI-ERSCP-WUR Conference Wageningen, The Netherlands

MSc Jana Z'Rotz MA Noah Balthasar Prof. Dr. Timo Ohnmacht

Business

July 6, 2023

FH Zentralschweiz

Overview

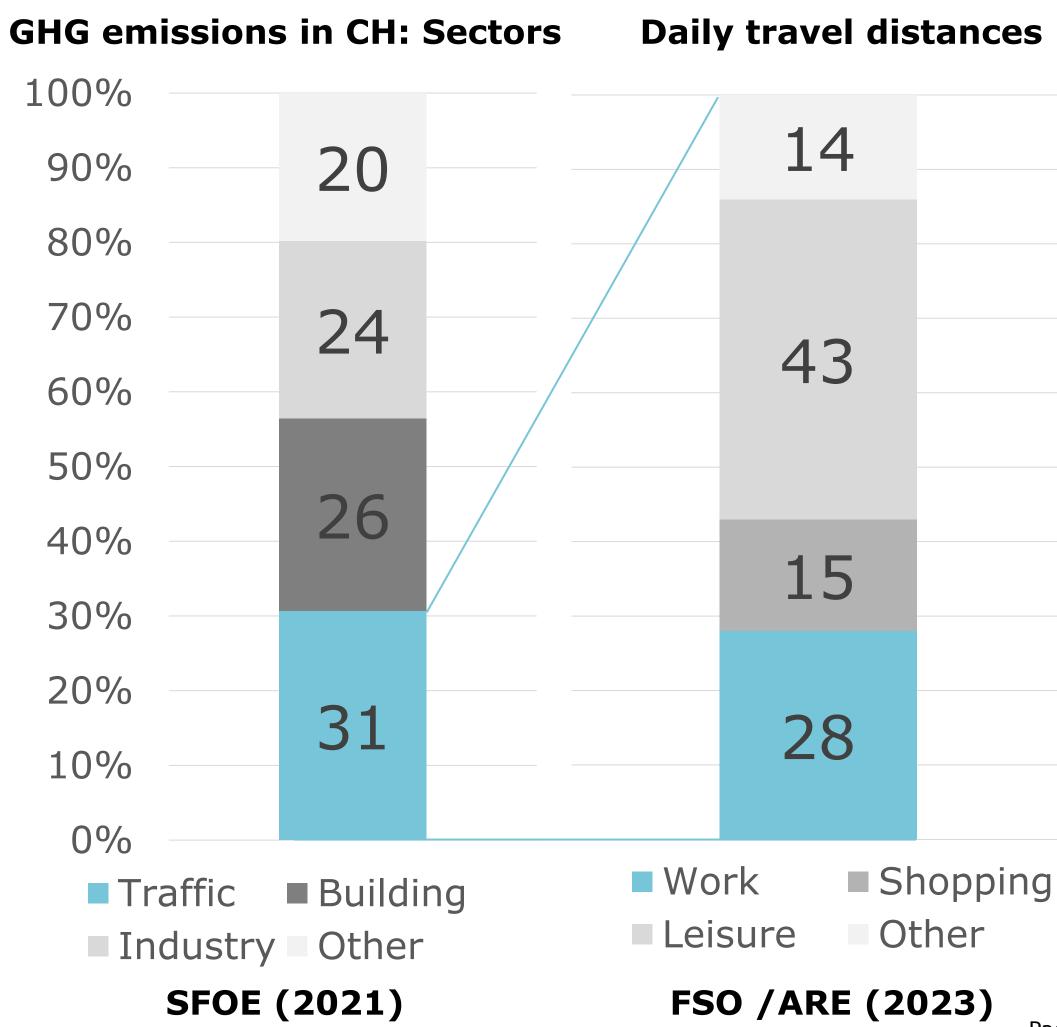
Background

Study aim & research questions

Literature review

Our living lab «Suurstoffi»

Methodology


First results & interpretations

Summary & outlook

- So far, **GHG reduction** has been achieved mostly in the building and industry sector.
- **One third** of GHG emission is caused **in the** traffic sector.
- But: No reduction in emissions since **1990 in the** traffic sector (FOEN 2022; SFOE 2020; 2021, p.5; FSO 2022b, 2022a).
- Traffic caused in 2021 **13.9 mio. tons** of **CO**₂
- Trip purpose work = 28 %, equals **3.9 mio. tons of CO**₂
- 5 mio. employees in Switzerland. On average: **761 kg of CO₂ per year.**

How high is this figure in our LL? **Can it be influenced?**

Green house gas (GHG) emission in Switzerland and daily travel distances (2021)

Literature Review

Telework is considered as a (transport) **policy** to **reduce** work related **travel CO₂ emissions** (Cass & Faulconbridge 2016; Santos & Azhari 2022)

For Switzerland:

- Ohnmacht et al. (2020) show effects for using **co-working spaces** and
- Wöhner (2022) & Ravalet and Rérat (2019) for home-office use
- on **reducing distance travelled** on the day of the telework activity.

In general: CO₂ emissions for work commutes are influenced by

- **commuting distance** (i.a. Heinen & Mattioli 2019)
- mode of transport (i.a. Pérez-Neira et al. 2020; Sobrino & Arce 2021)
- various **sociodemographic indicators** (gender, income, age, household) (i.a. Brand et al. 2021; Cao & Yang 2017; Cirilli & Veneri 2014, Wang & Zeng 2019)

Research gap: Rebound effects (e.g., more leisure trips on teleworking days) and spillover effects (increase in individual living space due to separate rooms for home office)

Transformative change within a Living Lab (LL)

Our understanding: In energy studies, a living lab introduces a (temporary) transformative change within a real-life setting.

To "encourage people's engagement in new ways of doing" within the discourse of climate change through a participatory setting (co-creation of interventions) (see Sahakian et al. 2021, p.3).

Shortcomings of participatory practices within LLs:

- Valid population data on consumption patterns and mobility behavior is often scarce especially when the living lab is set up initially.
- central to a living lab approach (e.g. for the government or policy makers that finance research).
- Key data is the backbone of evaluation studies.

But how to achieve this key data?

- Quantitative monitoring of energy savings and the GHG mitigation reduction introduced by interventions is

Study aim and research questions

Aim 1: Carrying out a (cross-sectional) base-line-survey, ex-ante-intervention, quant. questionnaire

Aim 2: Including key data to describe the residents of the living lab (socio-demographics, work life characteristic, CO_2 -figures for work commutes)

Aim 3: Survey design and methodology is understood as a process of collaboration within the living lab

RQ1: How can the GHG mitigation potential of the intervention "telework" be analyzed in a living lab?

<u>RQ2</u>: What are the correlates between individual / work characteristics and CO₂ emission for work commutes?

Our living lab «Suurstoffi»

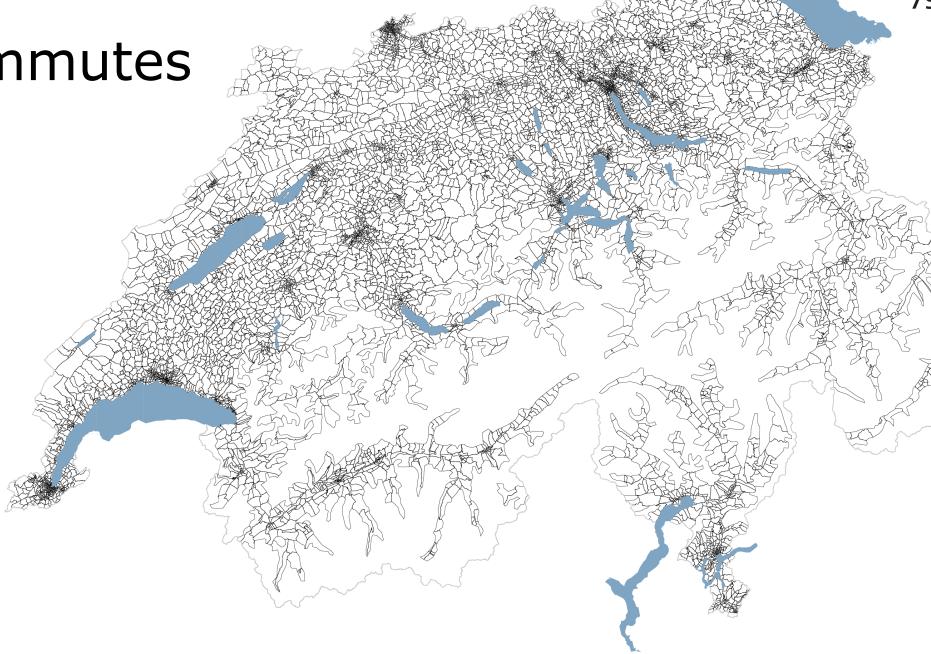
The modern "Suurstoffi" Site in the municipality of Risch-Rotkreuz serves as a **living lab.**

- 1500 inhabitants
- 2500 workplaces
- 2600 students

Methodology: Study design

Participative approach

board for the methodological design and content of our study. Addresses were provided by the **municipality** of Risch-Rotkreuz.

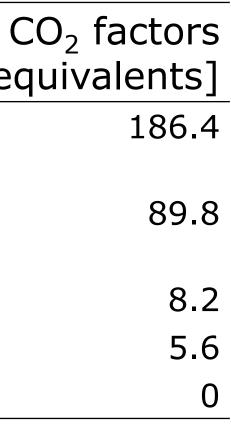

- **Quantitative cross-sectional study** with standardized questionnaire
- **Representative survey** of residents with an age of 18 years and older (N = 922 persons)
- **Personal letter** with paper-pencil-survey and prepaid reply envelope, in parallel **online survey** in German or English
- **Incentive** in form of a **voucher worth 10 Swiss francs** per person from a local bakery after response
- **Reminder** wave with response control & **field support** with hotline and email support
- Response rate after date cleaning: n = 296 : <u>32%</u>

- Researchers, public bodies, a real-estate company, industry partners and transport companies have served as a sounding

Methodology: Generating CO₂ figures for work commutes

- Study participants report work-days of the week, postal code of workplace locations, mode of transport (MoT) for commute
- Matching of living location and workplace
 location via postal codes with traffic zones of
 the Swiss federal transport model
- Imputation of commuting distance to the survey
- Combining the distances per MoT and commute with CO₂ equivalent factors based on mobitool factors (Swiss standard)

MoT


CO₂ factors [grams Co₂-equivalents]

Passenger car, diesel, gasoline (fleet average) Passenger car, battery electric (fleet average) Train, regional transport, s-rail By bike On foot

NPVM 2017 7978 Zonen

Descriptives: general

Attribute	% or Average
Gender	50 % female
Age	41 years
Household (HH) size	2.4 persons
HH income	10 140 Swiss Francs
Car use	23 % car free HH
PT tickets	86 % of HH
Employment rate	84 %
Telework rate	60 %
Telework days/week	1.6
Two sample t-test	

Two sample t-test

* = The difference is significant at the 0.05 level (p < .05, 2-sided).

Attribute	% or Average	Sig.
MoT for work commute		
Car	46 %	
Public transport (PT)	35 %	
Bike	5 %	
Walk	13 %	
Commuting distance (per day & <i>All</i> <i>Teleworkers</i> <i>No teleworkers</i>	one way) 27 km 31 km 21 km	*

n=242

Descriptives: CO₂ emission for work commute in a year

Attribute	Average Sig.	Attribute	Average	Sig.
Work commute		Gender		
Switzerland	761 kg	Female	622 kg	
Our Living lab	742 kg	Male	819 kg	
MoT for work commute	**	Survey language		**
Car	1538 kg	German	805 kg	
Public transport (PT)	77 kg	English (proxy for "expats")	326 kg	
Bike	28 kg			
Walk	0 kg	Teleworking		*
		Yes	597 kg	
	Correlation	No	964 kg	
Income	.125 .			
Two sample t-test / ANOVA				n=235

Attribute	Average Sig.	Attribute	Average	Sig.
Work commute		Gender		
Switzerland	761 kg	Female	622 kg	
Our Living lab	742 kg	Male	819 kg	
MoT for work commute	**	Survey language		**
Car	1538 kg	German	805 kg	
Public transport (PT)	77 kg	English (proxy for "expats")	326 kg	
Bike	28 kg			
Walk	0 kg	Teleworking		*
		Yes	597 kg	
	Correlation	No	964 kg	
Income	.125 .			
Two sample t-test / ANOVA ** = The difference is significant a * - The difference is significant a				n=235

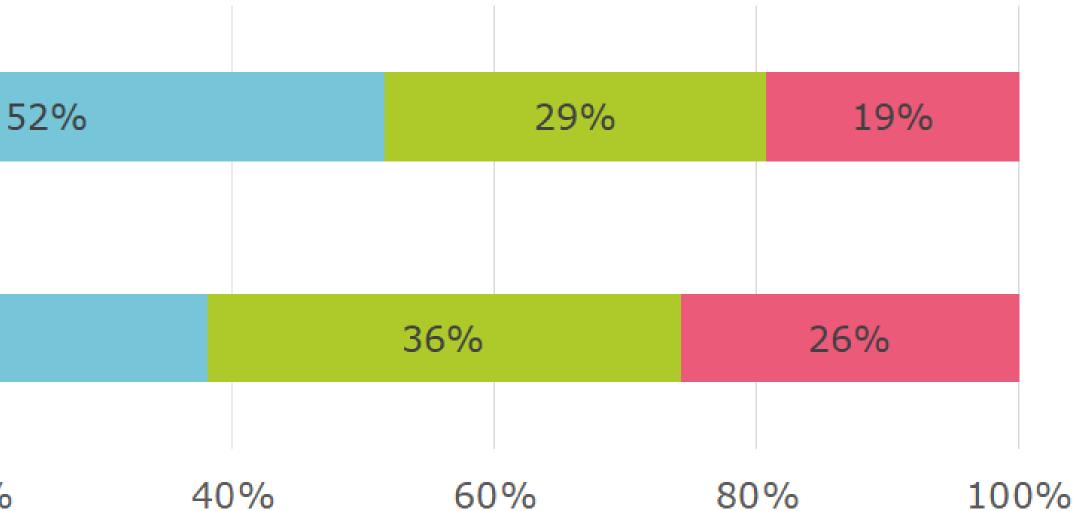
= The difference is significant at the 0.05 level (p < .05, 2-sided).

= The correlation is significant at the 0.10 level (p < .10, 2-sided).

PMA & «Orientations» towards the car and public transport (PT)

Constructs	Average Sig.	Constructs	Correlation Sig.
<u>Phase Model of Action (PMA)</u> (based on Bamberg 2013)	**	Orientations (5-point Likert scale))
<i>Phase 1: no car use reduction planed</i>	1005 kg .	<i>Travelling by other MoT than car is good/pleasant</i>	222 *
Phase 2: reduction considered, but impossible	1549 kg **	Travelling by other MoT than car is easy/practicable	377 *
Phase 3: reduction planed, first attempts	681 kg .	PT is too inflexible for me	.193 **
Phase 4: is reducing, wants more	463 kg	I like to travel by PT because I controls focus on other things during the	
Phase 5: no car is used at all	61 kg **	journey	

Two sample t-test / ANOVA ** = The difference/correlation is significant at the 0.01 level (p < .01, 2-sided). * = The difference/correlation is significant at the 0.05 level (p < .05, 2-sided).


. = The correlation is significant at the 0.10 level (p < .10, 2-sided).

n=235

Travel activities : some hints on rebound effects

Working ...

at the employer on site (n=244)during teleworking days (n=302) 38% 0% 20% Leisure (e.g. sports, visiting friends)

Shopping (e.g. errands, going to the pharmacy)

Bringing and picking up (e.g. children to music lessons, grandparents to the doctor)

Working during telework days: Higher shares for "leisure" and "bringing and picking up".

Summary & outlook

- level (public bodies, companies, transportation companies).
- A T₀-measurement was produced: The people in the LL consume 742 kg CO₂ a year for commutes.
- This key data is correlated with
 - teleworking
 - orientations towards the car and public transport
 - expats vs. Swiss people
 - income

Outlook on further RQs:

How does this figure change when we introduce **interventions** in the LL (e.g., new co-working spaces as shared space in LL)?

Rebound effects regarding leisure time need to be considered in detail. But: First indication that the share of **leisure trips increase** on the teleworking days.

- Key data was produced with a survey that was supported and feedbacked by members of the LL on the meso-

Thank you for your attention!

Lucerne School of Business Institute of Tourism and Mobility ITM

Noah Balthasar Research Associate

Phone direct +41 41 228 42 99 noah.balthasar@hslu.ch **Lucerne School of Business** Institute of Management & Economics IBR

Jana Z'Rotz Senior Research Associate

Phone direct +41 41 228 99 63 jana.zrotz@hslu.ch

Lucerne School of Businesscs IBRInstitute of Tourism and Mobility ITM

Prof. Dr. Timo Ohnmacht

Lecturer

Phone direct +41 41 228 41 88 Timo.ohnmacht@hslu.ch

Literature

Bamberg, S. (2013). Applying the stage model of self-regulated behavioral change in a car use reduction intervention. Journal of Environmental Psychology, 33, 68–75. https://doi.org/10.1016/j.jenvp.2012.10.001

Brand, C., Dons, E., Anaya-Boig E., Avila-Palencia I., Clark, A., de Nazelle, A., Gascon, M., Gaupp-Berghausen, M., Gerike, R., Götschi, T., Iacorossi, F., Kahlmeier, S., Laeremans, M., Nieuwenhuijsen, M.-J., Orjuela, J.-P., Racioppi, F., Raser, E., Rojas-Rueda, D., Standaert, A., Stigell, E., Sulikova, S., Wegener, S., & Panis, L.-I. (2021). The climate change mitigation effects of daily active travel in cities. Transportation Research Part D: Transport and Environment, 93, 102764. https://doi.org/10.1016/j.trd.2021.102764

Cao, X [Xiaoshu], & Yang, W. (2017). Examining the effects of the built environment and residential self-selection on commuting trips and the related CO 2 emissions: An empirical study in Guangzhou, China. Transportation Research Part D: Transport and Environment, 52, 480–494. https://doi.org/10.1016/j.trd.2017.02.003

Cass, N., & Faulconbridge, J. (2016). Commuting practices: New insights into modal shift from theories of social practice. Transport Policy, 45, 1–14. https://doi.org/10.1016/j.tranpol.2015.08.002

Cirilli, A., & Veneri, P. (2014). Spatial Structure and Carbon Dioxide (CO2) Emissions Due to Commuting: An Analysis of Italian Urban Areas. Regional Studies, 48(12), 1993-2005. https://doi.org/10.1080/00343404.2013.827333

FSO (2022a). Leistungen im Personenverkehr. Federal Statistical Office FSO: https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaetverkehr/personenverkehr/leistungen.html (accessed on 15.06.2023)

FSO (2022b). Strassenfahrzeuge - Bestand, Motorisierungsgrad. Federal Statistical Office FSO: https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaetverkehr/verkehrsinfrastruktur-fahrzeuge/fahrzeuge/strassenfahrzeuge-bestand-motorisierungsgrad.html (accessed on 15.06.2023)

FOEN (2022). Treibhausgasinventar 2020: Die Schweiz verfehlt ihr Klimaziel knapp. Federal Office for the Environment FOEN: https://www.bafu.admin.ch/bafu/de/home/themen/internationales/mitteilungen.msg-id-87952.html (accessed on 10.10.2022)

Heinen, E., & Mattioli, G. (2019). Multimodality and CO2 emissions: A relationship moderated by distance. Transportation Research Part D: Transport and Environment, 75, 179–196. <u>https://doi.org/10.1016/j.trd.2019.08.022</u>

Literature

Ohnmacht, T., Z'Rotz, J., & Dang, L. (2020). Relationships between coworking spaces and CO2 emissions in work-related commuting: first empirical insights for the case of Switzerland with regard to urban-rural differences. Environmental Research Communications, 2(12), 125004. https://doi.org/10.1088/2515-7620/abd33e

Pérez-Neira, D., Rodríguez-Fernández, M. P., & Hidalgo-González, C. (2020). The greenhouse gas mitigation potential of university commuting: A case study of the University of León (Spain). Journal of Transport Geography, 82, 102550. https://doi.org/10.1016/j.jtrangeo.2019.102550

Ravalet, E., & Rérat, P. (2019). Teleworking: decreasing mobility or increasing tolerance of commuting distances? Built Environment, 45(4), 582-602. 10.2148/benv.45.4.582

Sahakian, M., Rau, H., Grealis, E., Godin, L., Wallenborn, G., Backhaus, J., Friis, F., Genus, A.-T., Goggins, G., Heaslip, E., Heiskanen, E., Iskandarova, M., Jensen, C.-L., Laakso, S., Musch, A.-K., Scholl, C., Vadovics, E., Vadovics, K., Vasseur, V., & Fahy, F. (2021). Challenging social norms to recraft practices: A Living Lab approach to reducing household energy use in eight European countries. Energy Research & Social Science, 72, 101881. https://doi.org/10.1016/j.erss.2020.101881

Santos, G., & Azhari, R. (2022). Can we save GHG emissions by working from home? Environmental Research Communications, 4(3), 35007. https://doi.org/10.1088/2515-7620/ac3d3e

Sobrino, N., & Arce, R. (2021). Understanding per-trip commuting CO2 emissions: A case study of the Technical University of Madrid. *Transportation Research Part D: Transport and Environment, 96,* 102895. <u>https://doi.org/10.1016/j.trd.2021.102895</u>

SFOE (2020). CO2-Emissionsvorschriften für neue Personen - und Lieferwagen. Swiss Federal Office of Energy SFOE: https://www.bfe.admin.ch/bfe/de/home/effizienz/mobilitaet/co2-emissionsvorschriften-fuer-neue-personen-und-lieferwagen.html (accessed on 12.06.2023).

SFOE (2021). Schweizerische Gesamtenergiestatistik 2021 [Report], Swiss Federal Office of Energy SFOE, Bern. https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-<u>und-geodaten/energiestatistiken/gesamtenergiestatistik.html</u> (accessed on 10.06.2023).

Wang, H., & Zeng, W. (2019). Revealing urban carbon dioxide (CO2) Emission characteristics and influencing mechanisms from the perspective of commuting. *Sustainability*, 11(2), 385. <u>10.3390/su11020385</u>

Wöhner, F. (2022). Work flexibly, travel less? The impact of telework and flextime on mobility behavior in Switzerland. Journal of Transport Geography, 102, 103390. https://doi.org/10.1016/J.JTRANGEO.2022.103390

HSLU July 6, 2023

